If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-64x=0.
a = 49; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·49·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*49}=\frac{128}{98} =1+15/49 $
| 60=5(12x+2) | | 3w-(-20)=74 | | 5/6t−2=3 | | 56t−2=3 | | 30+6p=4(1-5p) | | 16=31-5g | | 2x-11-4=-3 | | 4(3x-6)-4=-3x-6 | | -2+8k=-66 | | j/5-45=-35 | | 7=n/3-(-3) | | -28=13q | | 6(p-99)=-54 | | -1+10h=59 | | -2(x=-3(x+2) | | 10k+35=-55-5k | | z-33/9=5 | | P-5-13p=120-11 | | 15-2x-2=10x+3x×2 | | 6(1+6x)-2=2(6x+2) | | 6=3(g-7) | | -17=-2+3x | | -31-4=-5-5(1+5x | | 8x-11-2x=-6+10+9x | | 2/7(7u=14)-8=18 | | 21-2s=19 | | 6(f-98)=-18 | | 88x-11-2x=-6+10+9x | | 12x-124=4x+44 | | 3-3x=-9x+9 | | p^2+24=11p | | 12=−4(−6x−3) |